posets - определение. Что такое posets
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое posets - определение


Posets–Maladeta Natural Park         
  • Natural Park of Posets–Maladeta
  • Maladeta peak]] and Benasque Valley panoramic
PROTECTED AREA IN SPAIN
Natural Park of Posets-Maladeta; Posets Maladeta Natural Park; Posets-Maladeta Natural Park
The Natural Park of Posets–Maladeta is a Natural park located in northern Province of Huesca, Aragón, northeastern Spain. It is set within the Pyrenees .
Differential poset         
  • A Hasse diagram of Young's lattice
  • The [[Young–Fibonacci graph]], the [[Hasse diagram]] of the Young–Fibonacci lattice.
MATHEMATIC PARTIALLY ORDERED SET
Differential posets
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.
poset         
  • '''Fig. 3''' Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to 4
  • least}} element.
  • '''Fig.6''' Nonnegative integers, ordered by divisibility
  • '''Fig.2''' [[Commutative diagram]] about the connections between strict/non-strict relations and their duals, via the operations of reflexive closure (''cls''), irreflexive kernel (''ker''), and converse relation (''cnv''). Each relation is depicted by its [[logical matrix]] for the poset whose [[Hasse diagram]] is depicted in the center. For example <math>3 \not\leq 4</math> so row 3, column 4 of the bottom left matrix is empty.
SET ORDERED BY A TRANSITIVE, ANTISYMMETRIC, AND REFLEXIVE BINARY RELATION
PartialOrderedSet; PartialOrder; Partial order; Poset; Partial ordering relation; Partial ordering; Partially ordered; Strict order; Partially ordered sets; Ordered n-tuple; Strict partial ordering; Strict partial order; Poset category; Ordered collection; Non-strict order; Ordered set; Strict ordering; Interval (partial order); Ordinal sum; Partial Order; Partially-ordered set